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Naturally you will recall the uncertainty principle of quantum mechanics when you meet the 

concept of computational uncertainty principle. In fact, they have similar form, but they have 
different connotation. The former reveals the relation between two kinds of uncertainty due to the 
imperfection of numerical method itself and the finiteness of machine precision in numerical 
differential equations. The later reflects the relation between two kinds of uncertainty in the 
position and momentum measurement of a quantum particle in quantum mechanics. After hard 
work for some years, on the basis of large numerical experiments and strictly mathematical 
analysis, the related study group, Institute of Atmospheric Physics (IAP), Chinese Academy of 
Sciences (CAS), obtained new achievements, found two universal relations, and presented the 
computational uncertainty principle. The principle not only gives a great challenge to the 
reliability of long-time numerical integration for nonlinear differential equations, but also has 
significance for numerical differential equations. The achievements in this aspect are evaluated as 
creative work in the national key laboratory assessment in 2000, and are placed in the creative 
achievement list of CAS. 

1. Computational uncertainty principle 

Numerical results and theoretical analysis show that there is an inverse variation between 
method error (i.e., discretization error) and round-off error against stepsize, and thus a 
computational uncertainty principle similar to the well-known Heisenberg uncertainty relation of 
quantum mechanics is led. The explicitly mathematical expressions of the principle are as follows 

Cre ≥∆+∆ ，                               (1) 
h≥∆⋅∆ re ，                                (2) 

where  represents a measure of uncertainty due to the imperfection of numerical method itself, e∆
~r  a measure of uncertainty due to the inherent inaccuracy of digital computers,  and  are 
positive numbers dependent on differential equations while the machine precision is finite. 
Specifically, if the discretization error and the round-off error are treated as two “adjoint 
variables”, the computational uncertainty principle reveals that the smaller one of them, the 
greater will be the other adjoint variable. In other words, there are two basic limitations in 
numerical integration under finite machine precision: on one hand, there is an upper bound 
limitation for the magnitude of stepsize due to the stability condition of numerical method, on the 
other hand, there must be another limitation of upper bound for the number of integration steps 
because of the limitations of finite accuracy due to computing on actual machines. The two 
aspects are contradiction with each other, with the result that they have to complement each other, 
leading the computational uncertainty principle. 
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Owing to the inherent relationship between the two uncertainties due to numerical method 
and computer respectively, it naturally causes a limitation in the width of interval of effectively 
numerical solution. This is just the root cause of the inexorable existence of maximally effective 
computation time (MECT) and optimal stepsize (OS). Therefore, once the precision of calculation 
machine used is given, the best degree of accuracy which can be achieved for the numerical 
solution obtained by a numerical method is determined entirely. That is to say, if one fixes on the 
error tolerance 0>δ  (i.e., the numerical solutions which are less than the tolerance are 
acceptable), there is surely MECT T, so that the numerical solutions in the interval [0, T] satisfy 
the requirement of the tolerance and present the exact solutions in the interval very well, and that 
the exact solutions beyond the interval can not be determined by numerical method. Thus, the 
computational uncertainty principle gives a certain limitation to the computational capacity of 
numerical method under the inherent property of finite machine precision. 

2. Two universal relations 

Numerical results and theoretical analysis also show that there are two universal relations 
which are dependent on the machine precision and the order of numerical method and are 
independent of types of differential equations, initial values and numerical schemes. The relations 
are 
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where  and  are the OSs of the same k-step numerical method of order  in two 
machine precision 

Η1 Η 2 p

γ 1  and γ 2  with  and  significant digits respectively (n1 n2 γ 1 ×= 5 10 1−n , 
γ 2 × 10= 5 2−n , ),  and  are the MECT functions under two machine 
precision respectively, . From the relation (4) it results immediately that 
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where ,  is a positive number,  and  are the MECTs under two machine 
precision respectively. 

12 TTT −=∆ Ĉ 1T 2T

The two relations have significance and practical value. They reveal the intrinsic 
relationships between two OSs and between two MECTs under any two machine precision. 
According to the two relations, OS and MECT can be determined under any machine precision 
provided that OS and MECT under certain machine precision are known. 

3. Optimal integration method of step-by-step adjustment 

We always hope to achieve optimal numerical integration while we design numerical model. 
Here the optimum means computational accuracy; that is, the optimal numerical integration is that 
a numerical method carries out calculation with its best accuracy that can be achieved. Given 
differential equations and numerical method, spatial-temporal resolution and machine precision 
are main parameters to determine the best accuracy of the method. Based on the computational 
uncertainty principle, we present an optimal integration method of step-by-step adjustment. The 
flow diagram of the method is shown in the Fig. 1. Numerical experiments verify that the 
step-by-step adjustment method is an effective method for achieving optimal numerical 
integration. It can be expected that the method will has extensive applications in practice. 
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Figure 1. Flow diagram of the step-by-step adjustment optimal integration method. 

 

4. Implications 

(1) In practice, the computational uncertainty principle points out that there is a limit to the 
ability of effective simulation of computer. The existence of this limit is inherent and is 
independent of the objects simulated (more precisely except a zero measure set). The size of the 
limit, however, usually depends on the objects simulated. (2) Using the computational uncertainty 
principle we make simulations to the best. The computational uncertainty principle on the one 
hand points out the limit of simulation ability, and on the other hand, points out an optimal 
relation. The optimal relation gives the way to come up the best ability of simulation. (3) 
Developing the computers with higher precision is a way to enhance the ability of effective 
computation. At present for the various numerical methods in differential equations, all their 
kernels are the recurrent processes step by step. There is surely MECT for this class of methods, 
and the integration results beyond the time will be invalid, and so the long-time behavior of 
system can not be properly analyzed. According to the computational uncertainty principle, as 
long as machine precision is added, MECT can be extended, and thus the ability of effective 
computation is raised. (4) The accumulated effect and long-time influence of error should be paid 
great attention. In fact, the problem becomes more outstanding because mainframe computer and 
supercomputer can carry out variously large calculations. 

In a word, we are up against the change of idea from the idealization of infinite precision to 
the reality of finite precision. In the course of the change it is an important problem to be solved 
urgently how to break through the computational uncertainty principle and to raise the ability of 
long time numerical integration. 
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